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About Quadratically Connected sequences

Arkady M.Alt 7

ABSTRACT. The purpose of this article is to find conditions under which two
sequences given by linear recurrences of the second order with constant coefficients
are quadratically connected. The reason for this was a series of problems in an Math
Olympiad style for the solution of which it was necessary in one form or another
establish the quadratic connection between them.The text of the article is
accompanied by problems with variational solutions and generalizations.

MAIN RESULTS
About quadratically p-q generated sequences

Definition. Let p, g be real numbers. Sequence {z,} we will call
quadratically (p, q)-generated if x,, = t2,n € NU {0} for some sequence {¢,},
satisfying ¢,411 — pt, + qtn—1 = 0,n € N.

(such sequence {t,} we will call sequence-generator).

Theorem 1. Sequence {z,} can be quadratically (p, q) -generated by some
sequence {t,} iff sequence {z,} satisfies to

Tni1 — (P° — 2¢) Tn + ¢*Tn—1 = Mg",n € N (1)
where g 1 > 0 and M = 2 (xl — p\/ZT1Z0 + q:!:o) or equivalently

Tniz — (P* = @) ni1 + (0" — %) n — P2n1 = 0,n €N (2)

with zg,z1 > 0 and z2 = (p1/a:1 — q, /x0)2 .
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Proof.
1. Let 2, =t2,n ¢ NU {0} and ¢,41 — pt, + gtp_; = 0,neN.
Since
tnt1 — Pty + qlp—1 =0
then
(tn+1 + qtn—l)z = (ptn)2 —

= o)+ 2tpsites + P2 = p?2.
From the other hand

tn+ltn—1 - tEL =tp-1 (ptn - qtn—l) —tpn (ptn—~1 - qtn—2) =

=q(tntn2—12_)),n>1

implies
tnritno1 =t = "7 (tatg — £}) <=
& tngatno1 = 6 — ¢V (8 — tatg) =
B qu—l
=12 —q" (2 — PVZT1Z0 + qxo) =t — 5
Then,

2qtnt1tn-1 = 2qt — 2Mq"

and, therefore,

tar + 20t 1ty + 622 = %2 —s
=t 212 - 2M@ + P2 = 2 e

= 2, - (p* — 2q) 75721-;-1 +¢*t2 = M¢*,ne N
Substitution t, = \/z, in (3) gives (1).
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Due (3) we have
toro— (P° —2q) th ) + ¢°th — q (tay +2qt; — Mq" + ¢°t],_1) =0 <

= 2 o-0 -+ (@A)t -t =0 =
(2) and, by (1)

z2 = (p* — 2q) 21 — ¢*x0 + Mq = p*z1 — 2qz1 — ¢*mo + 2971 — 2pq/T1T0+

+2¢%@0 = (p/T1 — ¢+/Z0)” -

2. Let {z,} be sequence defined by (2) with z¢.21 > 0 and
= (py/z1 — q/% ) and let {¢,} be a sequence which satisfy to the

recurrence

thy1 — Pln + qtn—1 = 0,7’L eN

wher e ty := /xo,t1 := /Z1.

We will prove z, = t2,n € N using Math Induction.

Base of Math Induction
We have
_ 42 _ 2 2,2
zo = 3,71 = 11,72 = (py/T1 — qv/T0)’ = (pt1 — qto)’ = 13
Step of Math Induction
For any from supposition z,—1 = tfb_l, Iy = ti s Tl = t% 41 follows
Lnt2 = (p2 - Q) Lntl = (qp2 - q2> Tn + q3$n—1 =

(p —CI) nil (qp2—q )t2+qtn 1*—tn+2

As a corollary note that {z,} can be quadratically (p, 1)-generated by some
sequence {t,} iff sequence {z,} satisfies to

T+l — (p2—2)acn+a:n_1:M,n€N
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where 2o z7 > 0 and M = 2 (z1 — py/z1T0 + zo) .

Another example when quadratically (p, q) —generated sequence {zn} can
be defined by linear second degree recurrence with the constant in the right

hand side we obtain in the case p=r+landg=r,recR.
Indeed, in this case

(2) <= z,40— (7"2+r+1) Tny1 + (r3+r2+r) Tp =132 1 =0 <

< Tp4z — (7"2 + r) Tpy1 + r3xn — ZTpy1 + (7"2 + 7") Ty — r3mn_1 =0 <<

2 2
= Tnaa = (12 +7) Bngr + 700, = 20y — (r?+ 1) 2y +732,_,.
Hence,

Lnt+1 — (7‘2 + 7‘) Tn 4132, 1 =39 — (7‘2 + r) z1 +7r°20 = ¢ = const.

Since

v2 = ((r +1) Va1 — ry/z0)”

then

c:(r+1)2x1 +T2$o~2r(r+1) /—-1’055’1‘(7“24-7“).1‘1—}-7‘33:0:

= (r+1) (21~ 2ry/@oz1 +r%00) = (r + 1) (v/31 — r/T5)°
Thus

Tniy — (r? +r)3cn+rxn1~(r+1)(\/——r\/_—) ,neN

Sequence-generator {t,} satisfy to recurrence

tng1 — (P + 1)ty + 7t =0

and siavce
lnt1 — 1ty = ln — Ttp_1

then
tn+1 — V"tn =1 — Tto.
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Let d =ty —rto then t, 1 — (r+ 1)ty +rtp_1 =0 <> t,.1 = rt, +d. (Or,
the same result can be obtained by the other way:
Since

tnt1 — (r+ D itn+rtn1 =0,n €N & t 41 =1t, +d,n € NU{0},
where d := t; — rty, then

(tnar — d)? = r2t2 = 2. — r*2 = 2dtp1 — d*,n € NU{0},

and, therefore,

11— 7“2th —7r (ti — 22 ) = 2drtn41 — d? — 2drp41 — 2dr2tn +rd? =

2
¢ n—1

n
=2d (tpp1 —rtp) ~d® trd?> =d?(r+1) =
thr— (P +r) 4t =d2(r 1) =

= Tpp— (P + ) Tn + e, 1 = (r+1) (Va1 — r\/:ro)Q ,meN

Naturally ask a following question: For which p, g sequence {z,} defined by
second degree linear recurrence 41 — uZy + AT,_1 = 0, where p1, X, o some
constants is quadratically (p,q)-generated?

For any polynomial

P(z)=2™ 4+ p12™ t + poz™ 2 4 .. 4 pa1Z + P

and any sequence{a,} let

Lp (an) = Qngpm—-1 + P20n+m—2 + oo + Pm—1an + an_1,n € N

Then for given sequence {b,,} recurrence

Qntm—1 T P20ntm—2 + .. + Pm—1Gn + Gp—1 = by

get short notation Lp (ay) = b,,n € N.
Note, the following properties of this notation:
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1. Lpiq(an) = Lp (an) + Lo (an), for two polynomial P (z),Q (z);
2. Lcp(an) = cLp (ay) for constant ¢ and polynomial P (z);
3. if Q(x) =2zP (z) then Lg (an) = Lp (ant1) .

Lemma. Let P (z) = 23 — aa2 + Bz — 7 such that P(0) # 0 and
Qz)=z>~dz+pu.

Then any solution of Lg (z,) = o be solution of I, p(zn) =0 iff
P(z)=(z-1)Q(z) ie. P (1) =0 and a=A+LB8=pu+A v=p.

Proof.
Suffieciency. If

P)=(-1)Q (=) =2Q(z) - Q(a)
then

Lp(zn) = Lo (zny1) — Log(zp)=0—-0=0.
Necessity. Let

LQ (l‘n) =0 — Lp (:L‘n) = O,

where {x,} # 0. Then, since

P(z) = (z-1)Q(z)+ P(1)

we have
0=_Lp(z,) = Lqg (Tny1) — Lo (zn) + P (1) zn =

=0-0+P(l)z,=P(1)z, = P(1)=0.
Let

P(z) =2~ (p* — q) 2® + (pPg — ¢®) = — ¢*.

Due to Theorem 1, sequence {z,} ,defined by recurrence

Tnt1 — Azp, + HIpn_1 =0

is quadratically (p, 9)-generated by {t,} iff Lp (xn) =0 and
To, 21 2 0,72 = (p\/77 — qw/:vo)2 and by Lemma it is possible iff
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P =0+ 1-p*-q)+(0%—¢*)~¢*=0 <= 1+q-¢ —¢—

=1
~(1-qrt=0 = (1-9 (1+9*~p*) =0 < {Ipiilfﬁﬂ '

And also, by Lemma we have

A=p—q-1=q(p*-q-¢°), p=¢

and
o=a2— (p° —q—1) 21+ q’zo.

Ifg=1and p € R then

A=p*—2,u=1,0=(py/a1 — VZ0)" — (P — 2) 21 + 20 =

= 2 (2o — pv/Tox1 + 1) ;
Ifge R and |p| = |g+ 1| then

A=q(p*—q—¢*)=q(@+1), p=2¢°

o = (pyZ1 — qv/T0)” — (@ + @) 71 + ¢’z =
= (g + 1)z + ¢*zo — 2gp\/ToT1—
—(* + q) z1 + @z = ((g+ 1) 1 — 2gp/Toz1 + ¢ (g+1)zo) =

:{ (g+1) (\/m_l—q\/ﬁf,ifp:q—l-l
(g+1) (Vo1 +qyTo)”, ifp=—qg—1

Thus, we obtain following

Theorem 2. Only three kinds of sequences {z,} defined by recurrence
Tpil — Mp + 1 = o,n € N can be quadratically (p,q)-generated:
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i. Sequence {z,} defined by

Tnt1 __(p2 - 2) Tn+Tp_1 =2 (%o T PVZoZ1 +71),n €N
Zo,z1 = 0.
Then z, =#2,n e NU {0}, where
bl = Ptn +guo1 = 0,n € N, ty = VZo, 1 = /z1;
ii. Sequence {z,} defined by

Tnr1 = (¢ + q) 2p + ¢P2,yq = (¢+1) (Va1 — gy/z9)% ,n e N

Zo,x1 > 0.
Then z, =2 n € NU {0}, where

tn-l—l - (q+ 1) tn +qn_1 = O,Tl [~ N, to = /xOytl — /:El;
iii. Sequence {zn} defined by

Tn41 — (q2 +Q) Zn +931‘n—1 = (Q+ 1)(\/2’)1 +QVx0)2,n €N

Zo, 1 > 0.
Then z,, = 2. n ¢ NU {0}, where

b1+ @+ Ditn+ gy = 0,n e N, t = VZ0, 1 = \/ZT.
Applications.

Problem 1. (O86.MR, Proposed by Brian Bradie, Christopher Newport
University, USA). The sequence {a,} is defined by

a1 =1,a2 = 3 and Gnt1 = 6an —a,_; for all n = 1. Prove that

an+ (—=1)" is 5 perfect square for all n, > 1.

Solution. Using a; = 1,a2 = 3 and Uni1 =60, — a,_; we can define
correctly ag as 6a; — a2 = 3. Let z,, := q,, +- (=1)" then z, =4,z =0 and
substitution a,, = Tp + (=D)L ip ant+1 = 6ap + ap,_q =0 gives us
iecarrense T, — 6z, + Tp1 = 8(—1)""1 ne€Nand zg =42, = 0.

Easy to see that for ¢ = —1, p =4 we have

P'-20=6,>=1, M =g, — PVT1T) + qrg = —4

and, accordingi - 3 the Theorem Lz, =1t2n> 1, where
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tn+1 —4tn—tn_1 = O,TL > 1 and tog = 2,t1 =0.

Remark (generator of the similar problems).
For any real a, b, p, ¢ where p? # 4q let sequence {an} be defined by

An+1 — (p2 - 2q) an + q2an_1 =0,neN

and initial conditions ag = a2 + ¢, a1 = b? + cg, where

2 (b% — pba + qa?)
4g — p? '
Then a,, + cg" = t2,n € NU {0}, where sequence {t,} satisfy
tntl — Pln + qtn—1 = 0,m € N and to = a, t1 =b.
Indeed, easy to see that z, := a, + cq" satisfy

Tni1 — (02 — 20) T + a1 = M¢",n €N
where xo = t3,71 = t2, M =2 (t? — ptito + qt%) and, therefore, accordingly
to Theoreml sequence {x,} is quadratically (p,q)-generated

bn+1 + bn—l

Problem 2. Let sequence (b,) satisfy b, = — o8 for any.n € N and
bg = by = 5.

by +1 . .
Then is square of integer for any n € NU{0} .

bn+1 .
+ then z¢ = x1 = 1 and by substitution

Solution 1. Let xy, :=
b, = 6z, — 1 in recurrence by+1 — 98b, + bp—1 =0 we obtain for {zn}
following recurrence

Tnat1 — 98Ty + Tp—1 = —16,n € N

Accordingly to Theorem 2, case i. we clame p? —2 =098 and

2 (o — py/Tor1 + 1) = —16 <= p=+£10
and 2 —p=—8 <= p=10.
Thus z, = t2,n € NU{0}, where tn4y1 —10tp +t—1 =0, n €N and
to=1t = 1.

Remark (another solution). Since b, positive for all n € NU {0}, then
bp +1

we can define t, ;= 5
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Then

by — 2+/(b 1) (b,,— 1
(tn+1+tn~1)2=bn+1+ n—1+ 2+ 6( nt1 + 1) (bp_g + ):
_ 98b, + 2+ 2y/(bpa1bp_g +bpt1 +bpg + 1) _
%x_
98bn +2 +21/byy1b, 1 + 98, £ 1
=——— Rl T T L

6

Since
brt1bn—1 — b2 = boby — b2 = 2400

then we have

(tn+1 + tn—l)2 =

98bn + 24 2\/bZ + 08b, + 2401 _ 98bn + 2+ 21/ (b, + 49)?
= - T o —
6.

5 =

by, + 2 4
_ W =2 (b +1) = (108,)°.

Thus, t,,; + ln—1 = 10t, and since to = t1 = 1 we conclude that ty, is
integer for all n € NU {0}.

Generalization. (Generator of this kind of problems)
Theorem 3. et sequence {t,} satisfy ¢,.1 — pt, + th-1 =0,n € N with

to = t1 = t, where p? # 4 and sequence {a,} satisfy
Antl = Tapn + 8an_1 =0,n € N with ap = a1 = q.

2 2
Then, a, = kt2 +1 for some k, | iﬂs:l,r=p2—2,k:%, :—f.
Proof. Let Zn == yn € NU{0} then To=2] = —— and, by

substitution a,, = kzp +1in anqq — Tan + San_1 =0, n € N, we obtain for

{zn} following recurrence

Lr—s—1)
k

Tyl =TTy + 8Ty = , neN
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By Theorem 1
an =kt2 +1 <= z, =t2 ,n e NU{0} <

l(r—s——l):

p 2 (82 — ptato + t2) =

= s:l,r:p2—2,

:2t2(2—p),g%—l:t2.

Thus we have

[(p? -4 ! 2
____(p ) =22 (2—p) & kt’ = _p+2)
k 2
l 2 2
and, since a — | = kt? then __Qizi_) =qg-—1 & = _?a_ and, therefore,
k=_l(p+2) :a(p+2)
2 pt2

Corollary. If
On+1 — (p2 —2) On+ Qp-1=0,n €N
and ap = a1 = a # 0, where a, p € Z and |p| # 2, then,

t2pay, 2t2
alp+2) p+2

is square of integer for any n € NU{0}.

Problem 3. Let

a1 = 1,0np+1 = 2an + 3&%~2,7‘L€N.

Prove that all term of this sequence are integers.
Solution 1. Since a, > 1 = apt+1 — 2a, >0 we have

Ont1 = 2an, + 30,% — 2 =

= (41— 2an)° =3a2 -2 & a2, —4ant100 + 402 = 3a2 — 2 =



786 Arkady M.Alt

= apy —4danian+a2 = —2 = a2 —danan_ +a’_; = —2.

Hereof
0727,+1 —dapi1an + a2 — (afl —4an0n-1 + afl_l) =0 <=
< a2, — a2 | —day (ansy — p-1) =0 <
<= (ant1 — an-1) (Ane1 — da, + n-1) =0 —

<~ Gn41 —4an + ap—1 =0,

since

Ap+1 > Qp-—1

From the other hand, if a1 — 4a, + ap_1 = 0, then we obtain
a/31+1 el 4an+1an + a727‘ = a,z,_ — 4anan-—1 + ai_l >
al —4danan_1 +a2_; = a} —daga; +a? =32 — 1241 = —2.
Solution 2. Let ¢, := 1/3a2 — 2 then a,41 = 2a, +t, and from

tpi1 = 30711 —2=3(2ay +t,)2 — 2 = 1202 + 12a,t, + 3t — 2 =
= 9aj, + 12anty + 3t + (302 — 2) =

= (3an + 2t,)?
follows t,41 = 3a, + 2t,.
From system { Unt1 = 205 + tn , by substitution ¢, = a,11 — 2a, in the

tht1 = 3an, + 2t,
second recurrence, we obtain

Ant2 — 20n4+1 = 3an + 2 (ant1 — 2a,) <= apy1 —4ap + apq = 0).
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Generalization.(Generator of this kind of problems)

Let sequence {t,} defined by tp41 — 2pt, +th—1 = 0,1 € N, where
p>1,t; > 0 and pt; > to.

Since p > 1 and pty; > tg then ¢35 — pt; = pt;1 —to = 0.

Using to > ptiand t; > 0 as a base of Math Induction and for any n > 1
assuming that t,,1 > pt, and ¢, > 0, we obtain ¢,4+; > 0 and

tnt2 — Plnt1 = Dlng1 —ln 2 (p2 - 1) tn, > 0.

Multiplying t,4+1 + tn—1 = 2pt, by tp41 —tp—1 we obtain

t2 1 —t2_1 = 2ptntpi1 — 2pta_itn >

= 12— tntyir +12 =12 — 2ptp_1 +t,_;,nEN

Hence, t;?H_l — 2ptntnyl + t% =c,n € N, where c = t% — 2ptito + t% and

tiﬂ — 2ptntnt1 + ti =c < (tps1 —ptn)2 = (p2 - l) ti +c =

<= tpt1 =Pl +V(@P? - 1)t +c,n €N
since tp4+1 > ptn,n € N and
(1° = 1) 2 + ¢ > (p> — 1) 3 + 83 — 2ptito + t& = (pt1 — to)” > 0.
Opposite, let now {t,} be a sequence defined by

thi1 = pln + V(P — 1) +ce,n €N

where given p > 1,¢; > 0 and ¢ such (p2 — 1) t2+c>0.
Then {t,} = {t.} satisfy t,+1 — 2pt, + -1 =0,n € N with

tg = pt1 — (p2—1)t%—|~c.
Herewith g < pt; and ¢ = t% — 2ptity + t%.

Indeed, then {t,} satisfy to t2 41— 2ptntay1 + t2 =c, n €N,
and since tp41 > pt,, we obtain t,412 > t,,n € N and

t2 0 — 2Ptnyitnio + oy — (241 — 2Dtntny1 + t2) =0 <
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= thiy — b = 2tniiteyg — 2ptntni1 <=

e (tn+2 — tn> (tn+2 +t, — 2ptn+1) =0 <— tnto+t, — 2ptn+1 =0,neN |

Since t2 = pt1 + /(p? — 1) {2 + ¢ then
to = 2pt1 — to = pt; — \/(pz—l)t%+c§pt1

and ¢ = t§ — 2pt;tg + £2.
Thus we obtaine the following theorem and corollary:

Theorem 4. Let a > 0, p > 1 and ¢ such that

(P —1)a®+c>0.

Then sequence {a,} defined by ant1 = pan +/(p% — 1) a2 +c,n € N with
a1 = a can be defined by recurrence On41 — 2pan + anp_1 = 0 with initial
conditions a; = a and ag = pa — V(p? —1)a? + ¢

Corollary. Let a be natural number and let p and c be integers such that
p>1 and (p? - 1) a? +cis non-negative integer. Then all terms of the

sequence {an}, defined by ani1 = pa, + \/(p? — 1)a2 + ¢,n € N with
a1 = a, are natural numbers.

Remark. Using idea of the second solution we consider another approach
to the general case.
Let

Gn+1 = pan + (p2_1)a’727,+c7n€N
a1 >0,p > 1 and c such that (p? — 1) a2+ ¢ > 0 then a,, > 0,n € N and

aiﬂ — 2Pnani1 + a2 = ¢ = a? — 2panani1 =c— a%H.
Denoting ¢, := /(p? — 1)a? + ¢ we obtain a,1 = pa,, + tn, and then

2 /.2 2 .22 2
bty = (p - 1) Anyrte=pian tec—a,, =

2
=p’a,; +a> - 2panant1 = (pany1 — an)® = ((»*-1)a, + ptn)” =
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= tpy1 = (p° — 1) an + Pt

Gn41 = Pan +1in
From the system nt
¥ { tnsr = (P2 — 1) an + Dty
tnto — 2ptnt1 +tn = 0 and apt2 — 2pany1 + an = 0.

we obtain

Problem 4. (Proposed by Arkady Alt). Let sequence {b,} defined by
3

1
bpt1 — 6b,, + by—1 = 0 with bg = 5, by = 5

. 1 .
Prove that all terms of sequence t, := 4/2b2 — e € NU {0} are integers.

Solution. Since by = % and

bn+lbn—1 - b%, = bn+lbn—1 - b% =

= (6bp — bp-1) br1 — b (6bp—1 — bp—2) = bpbp 2 —bp_1,n = 2
then
bt 1bp-1 — b2 = baby — b] = 2.
From the other hand multiplying bn41 — 6bn, + bp—1 =0 by bp—1 and using
bpt1bn—1 — b% = 2 we obtain

6bnbn_1 = bpy1bp_1 + b2 = b2+ b1 +2.

1
Let x, = 2b2 — 3 Then we have
1

1
Tnp1 = 26541 — 5= 2 (6br, — bp-1)* — 5=

[N

= 7262 — 4 (b2 +b2_; +2) +2b] 1 —

N |

= 72b2 — 24b,_1b, +2b2_1 —

1 1 1
68bi—2bi_1—8—§=34(2b,21—§>+17— (2bi_1+§> -9=

= 34z, — Tn—1 + 8.

Thus for {z,} we have z,41 — 34xn +Tn1 =8, nEN, 2o = 0,z1 =4
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and, by Theoreml, z,, = t2 neNuU {0} ,where {t,,} defined by
tny1 — 6t,, + th—1 =0 and to=0,t; = 2.
(q: 1,p=6,M=2((L‘1 —6“1‘1370—1—&70) =8 )

Problem 5. (Proposed by S. Harlampiev, Matematika, 1989,No.2 ,p.43,
Bolgaria). Sequence {an} defined as follow

2an+1 — 3anan+l + 17an — 16
=@y =2 = ,mEeN
NTRED Gty =3 4apaniy + 18a, — 17"

a). Determine a,, as function of n;
b). Prove that all terms of the sequence {a,} can be represented in the for

1+——2,Wherem€N.
m

Solution. Using substitution an = b, + 1 we obtain

iy = 20n41 — 3anant1 + 17a, — 16
3an+1 - 4G,n(ln+1 + 18an - 17

(an - 1) (an+1 - 1)

<= qa —-1= =
2 1 (an —1) =4 (an = 1) (ant1 — 1) = (@ry; —1)
brt1by, 1 14 1
= b ST T — = — — — 4
T 14b, — dbobary —bong bniz i1 by

S Tnpz — Mz, + 3, = —4,

1
an — 1
Sincex0=14x1—x2-4=9and 14=p2—2qforp:4, q =1 then

and 21 = 29 = 1.

1
where z,, = =
(3

2(x1 — py/m1Z0 + Q) = —4

and, therefore, by Theorem 1 Tp =1t ne NU {0}, where
thy1 — 4t, +ih1=0,neN and t1 =1ty =1.

Problem 6. The sequence (z,,)y is given by

Ty = i ((2+x/§)2"_1+ (2—\/5)%_1) neN.



About Quadratically Connected sequences 791
Prove that each z,, equal to the sum of squares of two consecutive integers.

Solution. First note that

oy =2 _4‘/5 (7—!—4\/5)” + 2+4\/§ (7- 4\/3)"

and, therefore, can be defined by recurrence

Tnt1 — 14z, + 21 =0,n €N (1)
with initial conditions zg = 1,21 = 1.
(o =13=224+3% 23 =14-13 — 1 = 9% + 10?).
We will find a sequence (b,) of integer numbers such that
Tp =02 + (bp +1)2 <= 22, — 1= (20, + 1) <= y, = a2,

where y,, := 2z, — 1 and a, := 2b, + 1.

1 .
By substitution z, = Un ¥ in the recurrence (1) we obtain

1 1 — 1
%%1_14.%; 4 Yn 12+ =0 <= Ynt1 — 14yn +yn-1 — 12 =0,

where yo = y1 = 1 and, therefore, yo = 25.
We will prove that a, is defined by recurrence

Opy1 — 40y +an1 =0, n € N (2)

with initial conditions ag = —1,a; = 1. Obvious that a,, € N.
Note that

(any1 + an,l)2 = 16a721 <= a%H + 0%-1 + 2ap410n-1 = 16a% <=
= a,,2H_1 + a2 | —14a2 = 2(a% —an+1an_1) yap =4-a3 —ap=4+1=5.

Since

2 _ 2
A1 — An20n = Qi1 (4an — @n-1) — (40nq1 — Gp) Gn = G5, — Gp—1Gn41
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for any n € N then afl —On—10py1] = a% —apa2 =14+5=6 and therefore,

a%+1 + (Zi_l - ].4(1,,21 = 12.

Since af =y, a3 =y, and both sequences (yn)nzl , (afL)TL>1 satisfies to the

same recurrence then y, = a2 for any n € N. \
By substitution Gn = 2b, + 1 in the recurrence (2) and initial conditions
a0 = —1,a; = 1 we obtain

2bnt14+1—-4(2b, +1)+2b, 1 +1 =0 < bnt1—4by,+ b, 1 =1,neN

and by = —1,5; = 0. And, of course bn, is integer for anyn € N
(For example by =4-0-(-1)+1=2b4 =4:2-04+1=09,.)

Problem 7. (M1174* KVANT). Sequence of integers ag, ag, ..., ay, ..is
defined by recurrence

Apy3 = 2an+2 + 2an+1 —Qp, n €N

with initial conditions a1 =1, ax =12, ag = 20.
Prove that for any natural n number 1 + danan; is the square of integer
number.

Solution. Since

n+t3 — 2ap49 — 20041 +a, = On+3 — 3apyo + An41+

Fant2—3ani1+a, =0 << On43—3Ant2+an 1 = (1) (ansa — 3any1 + ayp)

we obtain other equivalent definition of sequence (a,)y:

Unt2 ~ 3an41 + ap = (—1)"1 (a3 — 3as + ai) =

= ()" (20~ 36 +1) = (~1)" 15. (1)

Remark. By substitution an = (—1)"b,, in the recurrence (1) we obtain the
following eqivalent setting of original problem:
Sequence (by,)y is defined by recurrence
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bn+2 + 3bn + bn =15 Withbl = 41, b2 =12. (2)

Prove that 1 — 4b,,b,,41 is the square of integer number for any n € N.
But we will use another substitution a, = (—1)" (¢, +3) which gives us
convenient form for equivalent representation of our problem.

Namely, we have now linear homogenious recurrence

cn+2—|—3cn+1—{—cn :O,HEN

with ¢; = —4, ¢y = 9 and we have

1+4danant1 =1 —4bpbpy1=1-4 (Cn + 3) (Cn+1 + 3) =

= —-35— 12(1” - 126n+1 t 4cncn+1.
Since co = 3, cpi1Cn-1 — c?L = cocy — c% = 11 and
Cn1 (Cng1 +3cn + enm1) =0 <= cp1Cng1 + 3cnCa1 + 5y =0
we obtain
3cnCn_1 = ~ci_1 — Cp—1Cnt1 = —ci_l - ch —11.

Thus,

1 +4anany1 = —35 — 12¢, — 12¢p41 + 8cneni1 — 12¢nCpi1 =

= —35 — 12¢, — 12¢p41 + 8cpepy1 +44 + 4ci+1 + 4ci =

=dci,  +4c2 +9—12¢, — 12¢h41 + 8¢nCng1 = (20n41 + 2¢n — 3)?

Let t, := 3 — 2cpy1 — 2¢p,then 1 4+ 4apan1 = t% where t,, satisfy to the
recurrence

3—tnt1+3B—th)+3—tp1=0 <= tyy1+ 3ty +tr_1 =15

and tg =3 — 2¢g — 2¢1 = 5,81 =3 — 2¢1 — 2¢5 = —T.

Remark. (Generator of such problems). Let {t,} satisfy
tn41 — Ptn +tp—1 = 0,n € N. Then, using identity
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tnritn_1 — 12 = totg — t1,
we obtain

tnt1 (bnts = Ptp +1n1) =0 <= ptotn,, = 2+ttt

€ Platnir =t 1 + 2 — K,n € NU{0)
where K :=t2 — ptyty + t2.
For arbitrary b we have

(P+2) (tn +6) (tns1 +5) = (p+ 2) (tntns1 +b (b + tny1) + %) =
= Platni1 + 2tatngs + b (0 +2) (tn + tni1) + (p + 2)b? =
=tp +12 - K+ 2tntni1 +0(p42) (tp + tog1) + (p + 2) b2 =
= (tn +t041)* + 0 (0 +2) (ty + torr) + (p+2) B2 — K =

b 2)\? 2 2)2
=(tn+tn+1+ (p2+ )) _ b (p+2)

1 +(p+2)b* - K =

bp+2)\? b2(p? -4
= (tn + g1 + __(p2 )) - (p4 ) '
Thus,

4(P+2) (tn +b) (bns1 +b) = (20 + 2tny1 +b(p+2))2—4K —b2 (P’ —4) =

= AKHY (07 — )44 (D +2) (b + b) (tnry + ) = (21, + 21+ b(p+2))°.

Denoting x,, := t, + b, we obtain that for {zn} defined by

Tntl = PTn + Tp—1 = b(2—p),n €N
and Zo =10+ b,r1 =t; + b, holds
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4K + b2 (]92 - 4) +4 (p + 2) TnTnt+1 = (23371, + 25Un+1 +0b (p - 2))2 :
For p= -3, = 3,t; = —4 and b = 3 we obtain

K=16+3(-12) +9 = —11,
AK + 0 (p? —4) +4(p+2) nny1 = 1 — 4T Tnis
and

(22n + 2Tn41 + 0 (p — 2))? = (225 + 2xpy1 — 3)2.

More generalizations.
1. First we will find recurrence for {tntns1}.
Since

tapi— (P —2) 2 +t2  =2K,neN
and plntnye1 =12, + 2 — K, n € NU{0} then

P (tni1tnge — (p* — 2) tntnt1 + thoitn) =
= Plntitnto — (p2 - 2) Plplnt1 + plp—1tn =

=t tta g —K—(pP—2) (B + 2 —K)+ 12+ - K=

= (th,o — (»* - 2) toi + ta) + (t?z+1 —(p* - 2) tn + t%—l) ~4K —p’K =

= _p2K = lnt1tni2 — (p2 - 2) tntny1 +tp_1ty = —pK.
2. Lemma. Let {t,} satisfy t,11 — pty, +tpn_1 = 0,n € N.
Then for any p ¢ {0,—1,2, -2} thereis m &€ N such
(tm+3 - tm+1) (tm+2 - tm) (tm+2 - tm%l) 7 0.
Proof. Consider following cases.

i. There is m such that t,, = t,,4; then due to homogeneity of the recurrence

tht1 —ptn +th1=0,n €N
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We can suppose that t,, = tm+1 = 1.Also, without loss of generalty, we can
assume that m = Q.

So, we have

to:t1:l,tg:p—l,tgzp(p~l)—1=p2—p—1,

Then
ts—tl=p2*p*1*1=p2—17*2=(p—Z)(ZH‘l)?éO,
tg—to:tQ—tl =p—-2s#0.
Thus,
(tm+3 _tm+1) (tm+2 - tm) (tm+2 - tm+1) 7é 0
for m = 0,

ii. There is m such that ¢, = tm+2 then due to homogeneity of the
recurrence

tnt1 =Pty +t, 1 = 0,neN

We can suppose that ¢,, = tmy2 = p. Also, without loss of generalty we can
assume that m = (.

So, we have

to =tz = p.
Then,

ptl:t0+t2=2p == ;1 =2
and

ts=p" =2, 1ty =p(p® - 2) —p=p*—3p.
Hence, fi=to=p’-3p—p=p(p>—4) 20,

t3~t1=P2—2—2=P2—4750,t3—t2=P2*2—p=(P‘Q)(P‘*‘l)?é(l
Thus, (tm43 ~tmt1) (bmt2 = t) (Epao “tmi1) #0 form =1.

Theorem. Let {tn} satisfy lnt1 — Pty +tp_y = 0,7 € N and let
p¢{0,~1,2, —2} . Then sequences
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(tatnt1)n>0> (tn + tnt1) >0 (Dr>o0

are linearly independent, i.e alnln+1 + B (tn + tny1) +v=0 for any
neNU{0} iffa=8=v=0.

Proof. Suppose that there are o, 8,7 not all equal to zero such that
atntns1 + B (tn + tny1) +7 =0, for any n € NU {0}, then (o, B,7) be
solution of the system

olptnil + B (tn + tn+1) +9=0
- Olnyitngo T B (tnt1 +tny2) +7=0
otnyotnrs + B (tn+2 + tn+3) +v=0

for any n € NU {0} .

Note that
tntn—l-l tn + thq—l 1
det | tpy1tnie tngl +tne2 1| =
tn+2tn+3 tn+2 + tn—l—S 1
tntn+1 tn + tn+1 1
= (tn+3 - tn—|—1) (tn+2 - tn) det tnt1 1 0 =

trra 1 0

= (tn—|—3 - tn—{-l) (tn+2 - tn) (tn-f—‘z - tn-l—l) .

Since by Lemma always exist at least one m such that

(tm+3 - 1,;m—i—l) (tm+2 - tm) (tm+2 - tm—{—l) 7é 0
then from system
atmtme1 + B (tm + tmt1) +7 =0

tmaitmez + B (tma1 +tme2) +7 =0
atmi2lmy3 + ,8 (tm+2 + tm+3) +v= 0

follows a = B =~y = 0.
Let

f(z,v) iza($2+92) +bry+c(x+y)+d
then
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f(nstngr) = a(th +121) + btatnsy + c(t, + bng1) +d =
=a(plplny1 + K) + btntni1 +c(tn +thy1) +d =

= (ap-l— b) tntn+1 + C(tn -+ tn+1) +d+ aK.

Theorem 5. Let sequence {t,} satisfy tnt1 — ptn +tn_1 = 0,n € N where
pP#{0,~1,2,-2} and £2+2 £ 0 then

f(tnytnsn) = (atn + atper + )%, n € NU{0}

for some o and g iff

ap+b=a?(2+p)
¢ =2ap
d+aK = 82 4+ 2K

Proof. Since
(n + atnss + B) = a? (2 +£2,1) + 2021t 41 + 20 (1, + tni1) + 52 =

= & (Ptutns1 + K) + 20%tptpi1 + 208 (t, + thi1) + B2 =

=o? (2 +p) Inlnt1 + 2ap (t'n + tn+1) + 62 + oK
then by Theorem

Ftnstnir) = (atn + otnyy + 8)% n € NU{0} =
< (ap+b—a?(2 + D)) tatni1 + (c — 208) (tn + tny1) +

+d+aK — 82 - o®K =0, n € NU{0}
iff ap+b=a2(2+p), ¢=2af and d + aK = 82 + o?K.

More general analysis associated with problem 7. First, we will find
recurrence for sequence (a2) where (a,) be defined by recurrence
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An+1 — 2pay + ap—1 = 0,n € N.

Since 4p®a% = a2 ., + a2_; + 2ap4+1an-1 and

M = asag — a% = Qn410n—1 — ai,n €N

we obtain

4p?al = a,21+1 +a_| +2d2 4+ 2M +— aEH_l -2 (Zp2 —1) a2 4+ad2_ = -2M.

Second, we will find recurrence for sequence (anan1)
Multiplying both sides of recurrence any2 — 2pan+1 + an = 0 by a, we obtain

2 2 2
Ont20pn — 2P0n 100 + 0y, =0 < 2papyia, = A1+ ap + M.

Hence,

2p (an+2ant1 — 2 (2p2 — 1) Gnt1Gn + an@n_1) =

=aZ,+al +M—-2(2p°—1)a2, —2(2p* —1) a2 — 4p* M+

+oM t a2 +al 4+ M=a2 ,—2(2° —1)ad2,, +a:+2M+al,,—
~2(2p? —1) a2 +a?_| +2M — 4’ M = —4p*’M

> Ap+t2Qny1 — 2 (2p2 — 1) n410n + QpGn_1 = —2pM.

This is interesting recurrence, but more important now correlation

2 2
2P 10y = ap g + ay, + M,

because in the first, it show the way how construct problems like Problem 7
and in the second it is the base for the following generalization, namely we
will prove that for any natural m holds representation

. 2 2
Anlntm = Qmay + Bmaniy + Ym-

1. We start from the special linear combination of a,, and a1, namely let
a, 8 be arbitrary real number then
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(a1 + aan + 8)* = o® (a2, + a2 + M) + 52 — o?M+
+2a2an+1 an + 2aBan41 + 208a, =
= 2pa2an+1an + 2a2an+1an + 2aBan+1 + 2a8a, + ﬁz —o’M =

= 2a? P+ 1) apiia, + 2aBant1 + 2aBay, + 52 — o®M.

So, for given p, a, Bya,b, if ani1 —2pan + ap_1 = 0,n € N with
ap = a,a; = b then M = 2pab — a5 — b2 and

20% (p+ 1) any1an + 208011 + 20Bay + B2 — oM =

= (@@n41 + aay, + B)%.

3
Note,that for o = 2, 8 = -3,p= 5 a= 3,b = —4 we obtain
—4dont10, —12ap11 — 120, + 9 — 4 (36 —9—16) =

= —48n1105 — 12041 — 120, — 35 = (2a,4) + 2a, — 3)2.

For some suitable constant 4,m,6,¢ we can consider quadratic form

5a721+1 + Nant1an + 5&% +0any1 + 6a, + ¢
which with using identity

2pay 10, = afH_l +ai+M

can be transformed to the (aanii + aa, + B)%.
It should be constant 4, 1,0,{ such that

N+2p6 =20% (p+1), =208, — 6M = 82 — a2 M.

Other, more difficult problem can be constructed if we use sum of two

squares

(@ani1 + aan + 8)* + (Yans1 + ay, + )2,
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2. Since

2 2
i1y + Bmt10p41 + Vm+1 = Gnlnimt+l =

= 2DpApGnim — Onlntm—-1 =

= 2p (@m@? + Bma2 11 + Ym) — (0m-10% + Bm-105 11 + Ym-1)

we can see that ., Bm and v, satisfy to the same recurrence

Tmi1 — 2PTm + Tm—1 = 0 but have different initial conditions.

From a? = 1-a31+0-a%+1+0 we obtain ag = 1,80 = 0 and v9 = 0.
1 1 1

M 1
From anan41 = -Q—Ea% + %aiﬂ + % we obtain a; = %,51 = % and

M
1 = —. For example

1 1 M
ap=2p - ——1=0,f2=2p- ——0=1,72=2p - ;- —0=»M,
2p 2p 2p

thus apan12 = a%H + M,

1 1 4p?—1
2p 2p 2p 2p
M M (4% -1
73:2pM—-—:_.L_____),
2p 2p
thus
o = a2 a2, (4p*—1) M (4p*-1)
nn+3—_”i+ + .
2p 2p 2p

Using representation anGntm = ama% + ﬁma% 41 T Ym we obtain

n+19n+m+1 — 2 (22?2 - 1) UnGn4m + an-10n4+m—-1 =
= am (af 1 —2(20° — 1) ap + a5 1) +
B (s 2 (267 — 1) @y @2) i (1= 2 (27— 1) 4 1) =

= —2M (om + Bm) + 4 (1 = p*) ¥m-
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Thus, for any fixed m > 0 we have the following recurrence for AnCrdm:

2 —
Un+4+1Qn+m+1 — 2 (227 - 1) Anlntm + Gn-1Qnym—1 =

= =2M (am, + Br) + 4 (1 —pg) Yira-
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